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SUMMARY

The serial ordering of individual movements into
sequential patterns is thought to require synaptic
plasticity within corticostriatal circuits that route in-
formation through the basal ganglia. We used genet-
ically and anatomically targeted manipulations of
specific circuit elements in mice to isolate the source
and target of a corticostriatal synapse that regulates
the performance of a serial order task. This excitatory
synapse originates in secondarymotor cortex, termi-
nates on direct pathwaymedium spiny neurons in the
dorsolateral striatum, and is strengthened by serial
order learning. This experience-dependent and syn-
apse-specific form of plasticity may sculpt the bal-
ance of activity in basal ganglia circuits during
sequential movements, driving a disparity in striatal
output that favors the direct pathway. This disparity
is necessary for execution of responses in serial or-
der, even though both direct and indirect pathways
are active duringmovement initiation, suggesting dy-
namic modulation of corticostriatal circuitry contrib-
utes to the choreography of behavioral routines.

INTRODUCTION

The ability to learn and adapt to the environment requires expe-

rience-dependent plasticity in neural circuits formed by vast net-

works of synaptic connections. These circuits are both diverse

and complex, composed of synapses that originate from amulti-

tude of sources and terminate on many different postsynaptic

targets, generating an enormous variety of synaptic connections

with distinct properties and functions. Specific experiences are

thought to recruit selective and distributed forms of plasticity

at synapses connecting particular sources and targets. With

the advent of technologies that permit genetically and anatomi-
cally defined manipulations of neural circuits (Luo et al., 2008;

Yizhar et al., 2011), a major question in modern neuroscience

is how the function and plasticity of specific synapses within

complex circuits regulates behavioral output (Akil et al., 2010).

This challenge is exemplified by the striatum, which in rodents

is analogous to the caudate and putamen of primates (Graybiel,

2008). As the gateway to the basal ganglia, the striatum receives

synaptic inputs from many different sources, including a variety

of cortical and thalamic subregions (Wall et al., 2013). These pre-

synaptic inputs can terminate on a number of different postsyn-

aptic targets, including a small population of interneurons and a

much larger population of medium spiny projection neurons

(MSNs) (Kreitzer and Malenka, 2008). MSNs relay information

to downstream structures in the basal ganglia through two

discrete pathways formed byMSN subtypes that differ in a num-

ber of anatomical and cellular properties, including expression of

different dopamine receptor subtypes (Gerfen and Surmeier,

2011). Striatonigral MSNs that form the direct pathway (dMSNs)

express the Drd1a dopamine receptor, whereas striatopallidal

MSNs that form the indirect pathway (iMSNs) express the Drd2

dopamine receptor as well as the Adora2a adenosine receptor

(Schiffmann and Vanderhaeghen, 1993).

Through its myriad of inputs and outputs, the striatum plays a

central role in choreographing movements and behavior. This in-

cludes simple movements (e.g., Kravitz et al., 2010) as well as

more complex behavioral routines that involve multiple distinct

actions performed in serial order (e.g., Aldridge and Berridge,

1998). Serial order is a fundamental aspect of organized behavior

(Lashley, 1951), but despite many decades of research on the

striatum and basal ganglia, it remains unclear how heteroge-

neous chains of behavioral responses are regulated by various

synaptic inputs to different striatal cell types. While synaptic

plasticity in the striatum is important for learning to perform

many types of actions (Dang et al., 2006; Jin and Costa, 2010;

Koralek et al., 2012; Schreiweis et al., 2014; Xiong et al., 2015),

the specific source and target of synapses that undergo plas-

ticity during serial order learning have yet to be identified. We

used a combination of retrograde and anterograde viral and op-

togenetic manipulations in mice to study synapses connecting
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Figure 1. Inhibition of dMSNs Impairs Sequence Completion

(A) The SO task requires two discrete responses to be performed in the correct

AB sequence.

(B) MSNs forming the direct and indirect pathways were identified and

manipulated using transgenic mouse lines.

(C) AAV-DIO-Kir2.1 was injected into DLS of A2a-Cre (n = 7), D1-Cre (n = 10),

or WT mice (n = 13) prior to SO training. Note that virus injections were

bilateral.

(D–G) Percentage of sequences completed in each potential order after inhi-

bition of dMSNs or iMSNs through expression of Kir2.1. The percentage of

correct AB sequences was significantly decreased by dMSN inhibition (D),
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motor cortex and dorsolateral striatum (DLS). We find that the

initiation of a simple sequence of two responses is specifically

regulated by neurons in secondarymotor cortex (M2) that project

to the DLS, whereas sequence completion depends on activity

of dMSNs in the DLS. The monosynaptic connections between

M2 and dMSNs are selectively strengthened by serial order

learning, shifting the balance of striatal output in a manner that

is critical for performance of a behavioral routine.

RESULTS

Sequence Completion Depends on dMSNs in the DLS
We investigated the role of corticostriatal circuits in behavioral

performance of a serial order (SO) task that requires mice

to make two sequential responses (do ‘‘A’’ then ‘‘B’’; Figure 1A).

A prior study (Yin, 2010) reported that SO learning was disrup-

ted by excitotoxic lesions of all cells in the DLS. To refine

this analysis and manipulate the activity of genetically defined

cell types in the DLS, we used D1-Cre and A2a-Cre mouse

lines to, respectively, target dMSNs and iMSNs (Gerfen et al.,

2013) (Figure 1B) and performed in vivo stereotaxic injection

of adeno-associated virus expressing a double-floxed inwardly

rectifying potassium channel (AAV-DIO-Kir2.1; Figure 1C).

Expression of Kir2.1 introduces a leak current that decreases

the input resistance of infected cells (Lin et al., 2010), leading

to robust inhibition of spiking in striatal MSNs (Rothwell

et al., 2014). To confirm that MSNs expressing Kir2.1 are

healthy, we performed whole-cell patch-clamp recordings

from infected dMSNs in acute brain slices, using a cesium-

based internal pipette solution to block both endogenously

and exogenously expressed potassium channels. As ex-

pected, infected dMSNs had significantly lower input resis-

tance immediately after break-in, but input resistance normal-

ized to control levels after 5 min of recording (Figure S1A). At

this point, the amplitude and frequency of miniature excitatory

postsynaptic currents (mEPSCs) were similar in control and in-

fected dMSNs (Figure S1B). These data indicate MSNs in-

fected with Kir2.1 have decreased input resistance, but are

otherwise healthy and do not exhibit substantial alterations in

the properties of their excitatory synapses.

To test whether activity of either MSN subtype is necessary for

SO performance, we initially made bilateral virus injections prior

to any behavioral training (Figure 1C). After 5 days of reinforcing

the first response (‘‘A’’) on a fixed ratio one (FR1) schedule (Fig-

ure S2A), the SO task conditions were introduced, and food

reward was only delivered after completion of the AB response

sequence. The pattern of SO learning in our experiments was
with no effect on BA sequences (E). The percentage of AA sequences was

increased by dMSN inhibition (F), with no change in BB sequences (G).

(H) First step accuracy was calculated by dividing trials with a correct first step

(AB + AA) by the total number of trials, and was not affected by inhibition of

dMSNs or iMSNs.

(I) Second step accuracy was calculated by dividing correctly completed

AB trials by trials beginning with a correct first step (AB + AA) and was

significantly decreased by dMSN inhibition. Note that iMSN inhibition pro-

duced a transient but significant improvement in second step accuracy. All

data are mean ± SEM; *p < 0.05, worse performance; #p < 0.05, better per-

formance. Also see Figures S1 and S2.



similar to previous reports in mice (Yin, 2009, 2010) and reflected

complex changes in the repertoire of behavioral responses. The

initial percentage of correct AB sequences was low (�10%) but

increased monotonically over the course of training (Figure 1D),

while the percentage of backward BA sequences was low and

decreased slightly during training (Figure 1E). Because response

‘‘A’’ was reinforced in FR1 training, the majority of initial se-

quences during SO training were AA (Figure 1F). On the small

number of trials a mouse completed the correct AB sequence,

response ‘‘B’’ immediately preceded reward delivery, and this

close proximity between response ‘‘B’’ and reward led to an in-

crease in the number of BB sequences during the first several

training sessions (Figure 1G). With further training, mice gradu-

ally learned to withhold the initial ‘‘B’’ response and instead

began a higher proportion of sequences with the correct ‘‘A’’

response, leading to a decrease in the number of BB sequences.

These dynamic changes in SO performance can be decom-

posed by calculating independent measures of response accu-

racy on the first and second steps of the sequence, which

together determine the overall percentage of correct AB se-

quences. First step accuracy was defined as the fraction of all tri-

als that begin with a correct first step (Figure 1H), while second

step accuracy was defined as the percentage of all trials begin-

ning with a correct first step that were subsequently completed

with a correct second step (Figure 1I).

Overall performance of the correct AB sequence was

impaired by inhibition of dMSNs, but not iMSNs (Figure 1D).

This impairment was caused by failure to complete the second

step of the sequence, as inhibition of dMSNs led to a significant

increase in the percentage of incorrect AA sequences (Fig-

ure 1F). However, the percentages of incorrect BA and BB se-

quences were not affected by inhibition of dMSNs or iMSNs

(Figures 1E and 1G). As a result, second step accuracy was

significantly reduced by dMSN inhibition, whereas first step

accuracy was not affected (Figures 1H and 1I). While iMSN in-

hibition did not change overall performance, it did produce a

transient but significant improvement in second step accuracy

(Figure 1I).

ASpecificRole for dMSNs in theDLS in Performance of a
Learned Sequence
Although inhibition of dMSNs in the DLS clearly affected per-

formance of the SO task, this could potentially be explained

by behavioral impairments unrelated to the choreography

of response sequences. For example, general deficits in move-

ment or motivation could also affect SO performance. We have

previously shown that inhibition of dMSNs in the DLS with

Kir2.1 does not alter spontaneous locomotor activity in an

open field test (Rothwell et al., 2014) and therefore does not

grossly impair movement. In the present study, inhibition of

dMSNs in the DLS did not affect the acquisition of a simple op-

erant response during FR1 training (Figure S2A), demonstrating

intact capacities to learn and respond for reinforcement.

Although SO performance late in training was robustly impaired

by inhibition of dMSNs, there were no corresponding changes

in response rate or number of completed sequences (Figures

S2B and S2C), suggesting intact motivation to perform the

SO task.
An impairment of response switching that leads to persevera-

tion on the initial ‘‘A’’ response could explain both the decrease

in AB sequences (Figure 1D) and increase in AA sequences (Fig-

ure 1F) caused by inhibition of dMSNs in the DLS. To distinguish

a general impairment of response switching from a specific

effect on sequence completion, we examined behavior on error

trials that began with an incorrect ‘‘B’’ response. Any general

change in switching or perseveration should lead to a shift in

the probability that these error sequences conclude as BA

versus BB. This probability of error trial switching was not

affected by inhibition of either dMSNs or iMSNs (Figure S2D),

arguing against a generalized behavioral deficit in switching or

perseveration.

To further address the role of dMSNs in response switching

and perseveration, a separate cohort of D1-Cre mice received

bilateral injections of AAV-DIO-Kir2.1 into the DLS (Figure 2A).

These mice exhibited an impairment of motor coordination on

the accelerating rotarod (Figure 2B), consistent with our previous

report (Rothwell et al., 2014) and confirming the efficacy of this

manipulation. Next, this cohort was trained to perform a spatial

discrimination task in which either the left or right response

was active and reinforced, while the other response location

was inactive (i.e., responses had no consequences). After acqui-

sition of this task on a variable ratio 2 (VR2) schedule, the spatial

rule governing reinforcement was reversed during a test session,

such that responses in the previously inactive location were

reinforced, and responses in the previously active location had

no consequences (Gourley et al., 2010). As expected, the num-

ber of non-reinforced responses immediately increased after

reversal of task contingencies, and then declined gradually

over the course of the reversal session (Figure 2C). This within-

session spatial reversal test provides separate behavioral read-

outs of switching (i.e., responses in the newly reinforced location)

and perseveration (i.e., responses in the previously reinforced

location). Inhibition of dMSNs in the DLS did not affect the rein-

forced response rate before, during, or after reversal of task con-

tingencies (Figure 2D), indicating this manipulation does not

generally impair response switching. Non-reinforced responses

rates were also similar before, during, and after reversal (Fig-

ure 2E), indicating inhibition of dMSNs in the DLS does not

generally affect perseverative behavior. Response accuracy

was also similar between groups (Figure 2F), as expected, given

the comparable response rates.

After 2 additional days of training on the reversed VR2

schedule, the same mice were tested on a progressive ratio

schedule of reinforcement, with each food pellet requiring a suc-

cessively increasing number of active responses (Figure 2G). In

this assay, the highest response ratio completed (commonly

referred to as the ‘‘break point’’) is a sensitive measure of moti-

vational state and effort (Hodos, 1961). Inhibition of dMSNs in

the DLS did not affect the total number of active responses,

break point, or the number of pellets earned (Figures 2H–2J),

providing further evidence that effort and motivation are not

impaired by this manipulation. Together, these results indicate

that inhibition of dMSNs in the DLS produces a selective

deficit in the organization of sequential responses, rather than

more general effects on locomotion, motivation, perseveration,

or response switching.
Neuron 88, 345–356, October 21, 2015 ª2015 Elsevier Inc. 347
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Figure 2. Inhibition of dMSNs Does Not Alter Reversal Learning or Motivation

(A) AAV-DIO-Kir2.1 was injected into the DLS of D1-Cre (n = 9) or WT mice (n = 10) prior to training on a spatial discrimination task with a VR2 schedule of

reinforcement.

(B) Performance on the accelerating rotarod was impaired by dMSN inhibition, demonstrating the efficacy of this manipulation.

(C–F) Instrumental performance before and after a within-session reversal of the spatial discrimination. Reversal of task contingencies led to an immediate in-

crease in the number of non-reinforced responses per pellet, which subsequently declined during the reversal session (C). Inhibition of dMSNs did not affect the

reinforced response rate (D), non-reinforced response rate (E), or response accuracy (F).

(G–J) Instrumental performance on a progressive ratio schedule of reinforcement (G). The number of active responses (H), break point (I), and number of pellets

earned (J) were not affected by dMSN inhibition. All data are mean ± SEM; *p < 0.05, worse performance.
In our original experiment (Figure 1), virus injections were

performed prior to behavioral training in the SO task, and the

effect of dMSN inhibition was most robust late in training.

The observed phenotypes could thus be explained by a change

in either learning or performance of the SO task. To distinguish

these possibilities, we trained additional groups of mice on the

SO task and then made bilateral virus injections after behavioral

performance had stabilized. Under these conditions, dMSN in-
348 Neuron 88, 345–356, October 21, 2015 ª2015 Elsevier Inc.
hibition still impaired SO performance by decreasing second

step accuracy (Figures S2E–S2G), indicating an effect on task

performance rather than learning. The relatively stable impair-

ment of task performance also suggests that accumulation of

Kir2.1 protein over time does not influence the temporal pattern

of this behavioral phenotype. In subsequent experiments, all

manipulations were conducted after training to further investi-

gate SO performance.
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Figure 3. Retrograde Inhibition of M2 Projections to the DLS Impairs

Sequence Initiation

(A) Inhibition of specific corticostriatal projections after injection of AAV-DIO-

Kir2.1 intoM1 (n = 6) orM2 (n = 6), followed by RV-Cre into DLS. A control group

received only RV-Cre injection (n = 8), and all virus injections were bilateral.
Sequence Initiation is Specifically Mediated by M2
Projections to DLS
The preceding experiments indicate dMSNs in the DLS play a

critical role in completion of a learned sequence. The initiation

of this sequence presumably involves one of the many different

presynaptic inputs to these cells (Wall et al., 2013). As portions

of motor cortex are implicated in action initiation (Erlich et al.,

2011; Guo et al., 2014; Murakami et al., 2014) and organization

(Cao et al., 2015; Ostlund et al., 2009; Yin, 2009), we next

investigated whether synaptic inputs from motor cortex to the

DLS are critical for SO performance. To specifically manipulate

cells providing monosynaptic input to the DLS, we injected a

deletion mutant rabies virus expressing Cre recombinase (RV-

Cre), which is taken up by axon terminals and retrogradely

transported to the cell bodies from which these axons originate

(Dölen et al., 2013). To selectively inhibit distinct cortical projec-

tions to the DLS, we used a double-virus strategy in which RV-

Cre gates expression of AAV-DIO-Kir2.1, which was injected

into either primary motor cortex (M1) or secondary motor cor-

tex (M2) (Figure 3A). A control group received injection of RV-

Cre into the DLS alone (i.e., no AAV), and all virus injections

were bilateral. Cortical pyramidal neurons infected with both vi-

ruses showed decreased intrinsic excitability after only 3 days,

as well as a hyperpolarized resting membrane potential that

indicated these cells were still healthy (Figures S3A–S3C).

These results demonstrate the rapid retrograde transport and

expression of deletion mutant RV vectors (Wickersham et al.,

2007).

To evaluate SO performance, behavior after double-virus in-

jection was normalized to a 3-day baseline period just prior to in-

jection of RV-Cre. Inhibition of DLS-projecting neurons inM1 had

little effect on SO performance (Figures 3B–3G). However, inhibi-

tion of DLS-projecting neurons in M2 (M2/DLS) caused a sig-

nificant decrease in the percentage of correct AB sequences

(Figure 3B), accompanied by an increase in the percentage of

incorrect BB sequences (Figure 3E). This response pattern led

to a significant decrease in first step accuracy, but not second

step accuracy, following inhibition of M2/DLS (Figures 3F

and 3G). This result points to a role for M2 in sequence initiation

and contrasts with the effect of directly inhibiting dMSNs in the

DLS, which increased the percentage of incorrect AA sequences

and decreased second step accuracy (cf. Figure 1). It should be

noted that inhibition of M2/DLS had no impact on the percent-

age of incorrect AA sequences (Figure 3D), demonstrating that

this manipulation does not generally cause response repetition.

To quantify this in terms of error trial switching, we examined

error trials that ended with an incorrect ‘‘A’’ response and

calculated the probability that these sequences began as BA
(B–E) Percentage of sequences completed in each potential order after

inhibition of M1 or M2 projections to the DLS with Kir2.1. The per-

centage of correct AB sequences was significantly decreased by inhibition of

the M2/DLS projection (B), with no effect on BA sequences (C) or AA

sequences (D), but a significant increase in the percentage of BB sequences

(E). Inhibition of the M1/DLS projection had no effect.

(F and G) Inhibition of the M2/DLS projection decreased first step accuracy

(F) but not second step accuracy (G). All data are mean ± SEM; *p < 0.05,

worse performance. Also see Figure S3.
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Figure 4. Optogenetic Activation of M2 Projections to the DLS Pro-

motes Sequence Initiation

(A) AAV-ChR2 was injected into M2 (n = 4), with bilateral optogenetic stimu-

lation (473 nm, 1–20 Hz) of axon terminals in DLS.

(B–E) Percentage of sequences completed in each potential order after op-

togenetic activation of the M2/DLS projection. Bilateral stimulation before

the first response (left) had no effect on the percentage of correct AB se-

quences (B) or BA sequences (C), but increased the percentage of AA se-

quences (D) and decreased the percentage of BB sequences (E). Bilateral

stimulation between responses (right) decreased the percentage of correct AB

sequences (B) and increased the percentage of AA sequences (D), with no

effect on BA sequences (C) or BB sequences (E).

(F and G) First step accuracy increased with stimulation before the first

response (F), while second step accuracy decreased with stimulation

before the first response or between responses (G). All data are mean ± SEM;

*p < 0.05, worse performance; #p < 0.05, better performance. Also see

Figure S3.

350 Neuron 88, 345–356, October 21, 2015 ª2015 Elsevier Inc.
versus AA. This general measure of response switching was not

affected by inhibition of M2/DLS (Figure S3D).

To further dissect the behavioral function of theM2/DLS pro-

jection, we next used optogenetics to activate this pathway in

the anterograde direction. We performed bilateral injections of

AAV expressing channelrhodopsin-2 (AAV-ChR2) in M2 and im-

planted bilateral optic fibers in the DLS above axon terminals ex-

pressing ChR2 (Figure 4A). After mice had been trained in the SO

task, we leveraged the temporal precision of optogenetic stimu-

lation by delivering blue light pulses at varying frequencies during

different task segments: from the start of each trial until the first

response was made or between the first response and second

response. Performance on trials with bilateral optogenetic stim-

ulation of M2/DLS was compared to interleaved control trials

with no stimulation.

Stimulation of M2/DLS before the first response did not

affect the percentage of correct AB sequences, but a fre-

quency-dependent impairment was observed with stimulation

between responses (Figure 4B). This impairment was associ-

ated with an increase in the percentage of incorrect AA trials

(Figure 4D) but no change in the percentage of incorrect BB

or BA trials (Figures 4C and 4E). This overall pattern resulted

in a decrease in second step accuracy (Figure 4G) but no

change in first step accuracy (Figure 4F) or the probability of

error trial switching (Figure S3E). Stimulation before the first

step also caused an increase in the percentage of incorrect

AA sequences (Figure 4D), but this was associated with a

decrease in the percentage of incorrect BB sequences (Fig-

ure 4E), demonstrating opposite effects on these two different

forms of repeated behavior. This response pattern led to a sig-

nificant improvement in first step accuracy, while second step

accuracy was impaired (Figures 4F and 4G). Thus, stimulation

of M2/DLS terminals increases the likelihood of performing

the first response of the sequence, which can either improve

or impair performance, depending on when stimulation is

applied.

Sequence Learning Strengthens Synapses Connecting
M2 and dMSNs in the DLS
The preceding experiments indicate that sequence initiation and

completion are respectively regulated by M2 and dMSNs in

the DLS. The monosynaptic connection linking these cortico-

striatal circuit elements may thus be a key site that is modified

by the experience of SO learning. To evaluate the function of

M2/DLS excitatory synapses after sequence learning, we in-

jected AAV expressing ChIEF (Lin et al., 2009) in M2 of D1-to-

mato transgenic reporter mice. After behavioral training in the

SO task, we prepared acute brain slices and performed whole-

cell recordings from dMSNs and iMSNs in the DLS (Figure 5A).

We used a standard protocol (e.g., Ahmad et al., 2012; Jurado

et al., 2013; Schwartz et al., 2014) to measure the ratio of

AMPAR- to NMDAR-mediated currents, a surrogate index of

synaptic strength that provides a useful readout of synaptic

function and plasticity (Kauer and Malenka, 2007). MSNs were

first voltage-clamped at a hyperpolarized membrane potential

(�80 mV) to measure the amplitude of excitatory synaptic cur-

rents mediated by activation of AMPA receptors (AMPARs).

We then shifted to a depolarized holding potential (+40 mV) to
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Figure 5. SO Training Causes Pathway- and Cell-Type-Specific
Plasticity at M2/dMSN Synapses

(A) Schematic of coronal brain slice showing conditions for synaptic physi-

ology, with whole-cell voltage-clamp recordings and interleaved electric and

optical stimulation.

(B) Representative traces show electric (black) and optical (blue) AMPAR and

NMDAR currents from mice that were naive (top) or trained in the SO task

(bottom).

(C–E) The AMPAR/NMDAR ratio at M2 synapses onto dMSNs was increased

by SO training (n = 8 cells) relative to naive control (n = 9 cells), but there was no

difference between naive (n = 6 cells) and SO groups (n = 6 cells) for iMSNs (C).

No differences were observed with electric stimulation of all synapses (D), with

a significant difference between electric and optical AMPAR/NMDAR ratios in

dMSNs after SO learning (E). All data are mean ± SEM; *p < 0.05, increased

AMPAR/NMDAR ratio. Also see Figure S4.
relieve magnesium blockade of NMDA receptors (NMDARs) and

measured the amplitude of NMDAR-mediated synaptic currents

50 ms after stimulation (Figure 5B).
When optically evoking EPSCs from M2 terminals expressing

ChIEF, we observed an increase in the AMPAR/NMDAR ratio at

M2/dMSN synapses after SO training (Figure 5C). This change

was not observed in iMSNs and was also absent in control

groups trained on operant tasks that do not involve SO learning

(Figures S4A–S4D). Importantly, there were no changes in the

AMPAR/NMDAR ratios generated by interleaved electrical stim-

ulation, which indiscriminately activates all synaptic inputs to

MSNs (Figure 5D). Our experimental design permitted within-

cell comparisons of the electrical and optical AMPAR/NMDAR

ratios, which were significantly different only for dMSNs after

SO training (Figure 5E).

We also assessed several biophysical properties of NMDARs

and AMPARs that can influence measurement of the AMPAR/

NMDAR ratio. For example, changes in NMDAR subunit compo-

sition can alter the decay kinetics of NMDAR currents and affect

the NMDAR EPSC amplitude 50 ms after stimulation. However,

we detected no change in the half-width of NMDAR EPSCs

with either optical or electric stimulation (Figure S4E). The recti-

fication properties of AMPAR currents are also dictated by sub-

unit composition, though we intentionally measured the AMPAR

EPSC at �80 mV so that its amplitude would be relatively inde-

pendent of changes in rectification. Direct measurement of the

current-voltage relationship and reversal potential of AMPAR

EPSCs did not reveal any alterations following SO training (Fig-

ure S4F). There were also no changes in mEPSC frequency or

amplitude (Figure S4G), and because these events are gener-

ated at all excitatory synapses onto MSNs, this result is consis-

tent with anatomical evidence that M2 inputs represent <10% of

all monosynaptic inputs to dMSNs (Wall et al., 2013). These find-

ings illustrate that input-specific forms of synaptic plasticity, like

the one we observe at M2 synapses onto dMSNs, can be

obscured in electrophysiological assays that measure the aggre-

gate function of all synaptic inputs.

Sequence Completion Requires a Disparity of Striatal
Output
The preceding experiments suggest dMSNs are critical for

sequence completion, because they are driven to spike by

potentiated excitatory input from M2. This enhanced firing of

dMSNs would increase striatal output through the direct

pathway relative to the indirect pathway—a disparity that may

be critical for sequence completion (Figure 6A). To test this hy-

pothesis, we performed bilateral injections of AAV-DIO-ChR2

in the DLS of D1-Cre and A2a-Cre mice and implanted bilateral

optic fibers above infected cell bodies in the DLS (Figure 6B).

We initially attempted to enhance the disparity of striatal output

by conducting bilateral stimulation of dMSNs in the DLS during

performance of the SO task. However, this manipulation pro-

duced mild dyskinesia that disrupted ongoing behavior, leading

to an increase in response latency during the period of stimula-

tion (Figure S5A). This dyskinesia may result from the simulta-

neous activation of multiple competing motor programs. As an

alternative strategy, we attempted to boost output through

the indirect pathway by stimulating iMSNs in the DLS. This

manipulation did not disrupt behavior in the same fashion as

dMSN stimulation, as response latencies in the SO task were

not significantly affected (Figure S5B).
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Figure 6. Optogenetic Activation of iMSNs Impairs Sequence

Completion

(A) Schematic model of activity in corticostriatal circuits during sequence

completion, with a disparity in striatal output that favors the direct pathway.

Dotted blue lines indicate expression of ChR2 in iMSNs and subsequent op-

togenetic stimulation to normalize this disparity.

(B) AAV-DIO-ChR2 was injected into DLS of A2a-Cre mice (n = 4), with bilateral

optogenetic stimulation (473 nm, 1–10 Hz) after SO training.

(C–F) Percentage of sequences completed in each potential order after op-

togenetic activation of iMSNs in the DLS before the first response (left) or

between responses (right). Bilateral stimulation during either task segment

decreased the percentage of correct AB sequences (C) and increased the

percentage of AA sequences (E), with no effect on BA sequences (D) or BB

sequences (F).

(G and H) Bilateral stimulation had no effect on first step accuracy (G), but

stimulation during either task segment decreased second step accuracy (H).

All data are mean ± SEM; *p < 0.05, worse performance. Also see Figures S3,

S5, and S6.
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Stimulation of iMSNs in the DLS led to a frequency-dependent

decrease in the percentage of correct AB sequences, which was

apparent when stimulation was applied either before the first

step or between steps (Figure 6C). This impairment was associ-

ated with an increase in the percentage of incorrect AA se-

quences, but no change in the percentage of incorrect BB or

BA sequences (Figures 6D–6F). This response pattern led to a

significant decrease in second step accuracy (Figure 6H), but

no change in first step accuracy (Figure 6G), indicating an impair-

ment of sequence completion. Stimulation of iMSNs in the DLS

did not alter the probability of error trial switching (Figure S3F)

and did not impair response latency, rate, or accuracy during

reversal of a spatial discrimination in a separate cohort of mice

(Figures S6A–S6F). These latter results indicate perseveration

and response switching are not generally affected by stimulation

of iMSNs in the DLS.

We further analyzed the nature of incorrect AA sequences by

measuring response latencies during 10-Hz stimulation, which

produced the most robust impairment of SO performance (Fig-

ure S5C). Simulation before the first step did not affect latency

of the initial ‘‘A’’ response, further demonstrating that this type

of optogenetic stimulation of iMSNs in DLS does not cause a

general slowing of behavior (Figure S5D). In fact, on trials with

an incorrect AA sequence, the second erroneous ‘‘A’’ response

was emitted very quickly after the first response (<1 s), much

more rapidly than on control trials when the second step

response latency was >2 s (Figure S5E). As optogenetic stimula-

tion was delivered prior to the first ‘‘A’’ response and then termi-

nated, the accelerated performance of second incorrect ‘‘A’’

response must reflect a carryover effect of the stimulation that

rapidly disrupts sequence completion. In marked contrast, stim-

ulation of iMSNs immediately following the first ‘‘A’’ response

tended to prolong the second step response latency (Figure S5E)

while still increasing the probability of a second erroneous ‘‘A’’

response (Figure 6E). Thus, optogenetic stimulation during these

two different task segments caused errors to be committed with

different latencies but led to the same net reduction in second

step accuracy. Together, these results are consistent with the

notion that sequence completion requires a disparity in striatal

output that favors the direct pathway over the indirect pathway

(Figure S6G).



DISCUSSION

Neural circuits are formed by diverse networks of synaptic

connections linking specific sources of presynaptic input with

specific postsynaptic targets. In this study, we combined viral

and optogenetic manipulations of corticostriatal circuits with

behavioral assays and electrophysiological readouts of synap-

tic function, to dissect the source and target of a specific syn-

aptic connection that regulates the performance of a SO task.

A previous report showed SO learning was disrupted by exci-

totoxic lesions of all striatal cells in the DLS (Yin, 2010). We

extended this finding by manipulating the activity of genetically

defined MSN subtypes in the DLS and found that activation of

dMSNs was necessary for completion of the response

sequence, as decreasing the activity of these cells through

expression of AAV-DIO-Kir2.1 caused a reduction of second

step accuracy. In contrast, lesions of all striatal cells were re-

ported to impair performance of the first step of the SO task

(Yin, 2010). As recent evidence suggests dMSNs and iMSNs

are both active during action initiation (Cui et al., 2013; Jin

et al., 2014), and both are capable of positively modulating mo-

tor cortex (Oldenburg and Sabatini, 2015), activity in either

pathway alone may be sufficient for sequence initiation,

whereas sequence completion specifically requires sustained

activity of dMSNs.

To identify the excitatory synaptic inputs that are critical for

activating MSNs during the SO task, we focused on regions of

the motor cortex that are known to provide major inputs to

DLS (Wall et al., 2013). Our retrograde and anterograde manipu-

lations provided convergent evidence that synaptic projections

from M2 to the DLS are critical for sequence initiation. Inhibition

of M2 neurons projecting to DLS impaired first step accuracy,

while activation of M2 terminals in the DLS increased the proba-

bility of performing the first sequential response. The latter

phenotype manifested as an increase in the percentage of AA

sequences—the same phenotype produced by the manipula-

tions of the DLS, which was interpreted as an impairment of

sequence completion. The limited repertoire of response se-

quences available in the SO task (AB, BA, AA, and BB) gives

rise to this ambiguity between impaired sequence completion

and repetition of the first response, but we were able to resolve

this ambiguity by examining cases where our manipulations

actually improved SO performance. Inhibition of iMSNs in the

DLS with Kir2.1 produced small but significant improvements

in second step accuracy, thus pointing to a role in sequence

completion. Conversely, stimulation of the M2/DLS projection

before the first response caused a small but significant improve-

ment in first step accuracy, which points to a role in sequence

initiation. In rodents, M2 is also known as the medial agranular

cortex, and its numerous projection targets are similar to the pre-

motor cortex, supplementary motor cortex, and frontal eye fields

of primates (Reep et al., 1987; Stuesse and Newman, 1990). Our

results demonstrate the specific involvement of direct monosyn-

aptic connections from M2 to the DLS in SO performance and

complement previous studies implicating M2 in action initiation

and organization (Cao et al., 2015; Erlich et al., 2011; Guo

et al., 2014; Murakami et al., 2014; Ostlund et al., 2009; Yin,

2009).
To determine if behavioral training in the SO task alters the

function of synapses connecting M2 and DLS, we used optoge-

netics to stimulate synaptic inputs arising from M2 in a brain

slice preparation and performed whole-cell recordings from

identified dMSNs and iMSNs. We found that the AMPAR/

NMDAR ratio, a surrogate measure of synaptic strength (Kauer

and Malenka, 2007), was significantly increased after SO

learning at synapses between M2 and dMSNs. This form of

experience-dependent plasticity was highly specific, as it was

not detected at synapses between M2 and iMSNs, or with

bulk electrical stimulation of all excitatory inputs to dMSNs.

The increase in AMPAR/NMDAR ratio at M2/dMSN synapses

was not associated with major changes in the biophysical prop-

erties of AMPARs or NMDARs, and was only observed after

training in a behavioral task that required SO learning. Previous

studies show the organization of sequential actions is impaired

by genetic deletion of NMDARs from striatal MSNs (Jin and

Costa, 2010; Jin et al., 2014), leading us to speculate that acti-

vation of NMDARs on dMSNs triggers the strengthening of syn-

aptic input arriving from M2 and that this highly selective synap-

tic change may be a critical neural circuit modification that

mediates the choreography of a behavioral routine. However,

additional work will be needed to test this hypothesis and deter-

mine if plasticity of the M2/dMSN synapse is specifically

necessary for SO performance.

The Nature of SO Performance Impairments
Our SO task requires performance of a heterogeneous chain of

two distinct responses, so repetition of either response is con-

sidered an error. It was therefore important to evaluate whether

our manipulations of M2 and DLS had any impact on general

tendencies to repeat or switch responses, which would con-

found interpretation of SO performance. We assessed this pos-

sibility in a different behavioral context by training mice to

perform a spatial discrimination and then reversing task contin-

gencies within a test session. Performance of this within-session

reversal was not affected by inhibition of dMSNs with Kir2.1, or

by optogenetic activation of iMSNs, providing evidence that

SO performance impairments are not a secondary consequence

of more general changes in perseveration or response switching.

These findings are consistent with evidence that excitotoxic

lesions of the entire DLS do not impair spatial reversal in rodents

(Castañé et al., 2010).

In the spatial reversal task, switching from one response to the

other takes place within a single session, but over the course of

minutes. This contrasts somewhat with response switching dur-

ing a single trial of the SO task, which takes place within sec-

onds. It is thus possible that different mechanisms are involved

in switching responses on these two different timescales. To

further investigate response switching in the context of the SO

task, we examined the percentage of error trials that involve a

response switch (BA), which was not affected by any experi-

mental manipulation. We also calculated the probability of error

trial switching by comparing the percentage of BA error se-

quences with the percentage of error sequences that involve

repetition of the same response (AA or BB). Again, the probability

of error trial switching was not affected by any experimental

manipulation, providing further evidence that SO performance
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impairments are not caused by the inability to switch from one

response to another.

Other alternative explanations for the behavioral phenotypes

we observed in the SO task also merit consideration. For

example, a shift in motivational state could affect the effort

expended to switch from one response to another, versus

repeating the same response. However, inhibition of dMSNs in

the DLS did not affect instrumental performance on a progres-

sive ratio schedule, arguing against a shift in motivational state.

We also found that optogenetic stimulation of iMSNs in the DLS

did not impact response latencies in the SO task, which might

seem to contradict reports that iMSN stimulation in the dorsal

striatum impedes movement (Kravitz et al., 2010). However,

there are a number of technical differences between these

studies, including the location, pattern, intensity, and duration

of optogenetic stimulation. Perhaps most importantly, Kravitz

et al. (2010) performed bilateral optogenetic stimulation of the

dorsomedial striatum, whereas all of our experiments involved

bilateral stimulation of the DLS. These two different striatal sub-

regions are embedded in distinct cortico-basal ganglia circuits

that are known to mediate different behavioral functions (e.g.,

Castañé et al., 2010; Durieux et al., 2012; Lerner et al., 2015;

Thorn et al., 2010; Yin et al., 2009).

When we performed bilateral optogenetic stimulation of

dMSNs in the DLS, we observed mild dyskinesia that interfered

with ongoing behavior, which again differs from the locomotor

activation produced by a similar manipulation in the dorsomedial

striatum (Kravitz et al., 2010). However, general motor function

does not appear to be affected by inhibition of dMSNs in the

DLS with Kir2.1, as evidenced by intact instrumental perfor-

mance under a variety of task conditions (FR1, VR2, reversal,

and progressive ratio), as well as normal levels of open field

activity (Rothwell et al., 2014). We do find that this manipulation

impairs performance on the accelerating rotarod, consistent

with our previous report (Rothwell et al., 2014). This impairment

of rotarod performance may represent another example of a

response sequence—i.e., the series of foot steps required to

maintain balance on the rotarod—that depends on activity of

dMSNs in the DLS. Recent evidence that manipulations of M2

also impair rotarod performance (Cao et al., 2015) suggests

common corticostriatal circuit elements may be involved in

many different types of sequential movements and actions.

This includes performance of the SO task and other learned se-

quences of self-initiated responses (e.g., Desrochers et al., 2015;

Lu et al., 2002), as well as longer action sequences guided by

instructive cues (Bailey and Mair, 2006, 2007)

Encoding of Response Sequence by Corticostriatal
Circuits
Our data are consistent with patterns of single unit activity re-

corded in motor cortex and DLS during homogenous sequence

learning tasks involving multiple repetitions of the same res-

ponse (Jin and Costa, 2010; Jin et al., 2014) and provide a direct

test of hypotheses generated by these studies while also gener-

alizing the results to heterogeneous response sequences. Action

initiation is correlated with increased firing of neurons in motor

cortex (Erlich et al., 2011; Fujii and Graybiel, 2003; Guo et al.,

2014; Jin et al., 2014; Murakami et al., 2014), which is thought
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to precede and drive the activity of both dMSNs and iMSNs

in the DLS (Cui et al., 2013; Jin et al., 2014; Koralek et al.,

2013). However, as an action sequence unfolds, most iMSNs

exhibit a reduction in firing rate, while most dMSNs exhibit

sustained activity, leading to divergent firing patterns in down-

stream basal ganglia targets (Jin et al., 2014). Our data suggest

the sustained activity of dMSNs during sequence completion

is driven, at least in part, by strengthened excitatory synaptic

input from M2. Conversely, the quiescence of iMSNs could

involve collateral inhibition by dMSNs (Taverna et al., 2008) or

feed-forward inhibition by fast-spiking GABAergic interneurons

(Burguière et al., 2013; Gittis et al., 2011), which also exhibit sus-

tained activity during sequence completion (Jin et al., 2014). Our

optogenetic stimulation experiments demonstrate that quies-

cence of iMSNs is necessary for accurate sequence comple-

tion—a notion further supported by the small but significant

improvements in second step accuracy caused by iMSN inhibi-

tion with Kir2.1. This disparity in striatal output that favors

the direct pathway may positively modulate motor cortex via

basal ganglia outputs to the thalamus (Oldenburg and Sabatini,

2015), thereby enabling responses required to complete a

behavioral sequence.

In summary, our experiments have identified the specific

source (M2) and target (dMSNs in the DLS) of a synaptic circuit

that regulates SO performance and may be generally involved

in other types of sequential actions. Our data demonstrate that

the M2/dMSN synapse becomes stronger over the course of

behavioral training, which may contribute to the chunking or

concatenation of individual responses into a sequence, as well

as persistent activation of the direct pathway as behavioral rou-

tines are performed. The ability to dissect these complex corti-

costriatal circuits is not only important for understanding the

learning and performance of movement patterns under normal

conditions but should also advance our understanding of move-

ment disorders that impair sequential actions (Agostino et al.,

1992; Benecke et al., 1987), as well as psychiatric diseases

involving repetition of maladaptive routines and habits (Belin

and Everitt, 2008; Burguière et al., 2015).
EXPERIMENTAL PROCEDURES

Animals

All procedures conformed to NIH Guidelines for the Care and Use of Labora-

tory Animals and were approved by the Stanford University Administrative

Panel on Laboratory Animal Care. Experiments were performed on male litter-

mate mice, at least 40 days old and maintained on a C57Bl/6J background;

see Supplemental Experimental Procedures for additional details.

Behavioral Assays

Behavioral testing took place between 8 am and 6 pm, and all assays except

the accelerating rotarod took place in standard mouse operant chambers

(Schwartz et al., 2014). Food-restricted mice were first trained to retrieve

14 mg chocolate pellets from the food magazine. Operant training

commenced on a fixed ratio one (FR1) schedule, with each instrumental

response causing delivery of one pellet. For the SO task (Yin, 2009, 2010),

mice had to perform two distinct and sequential responses (‘‘A’’ then ‘‘B’’),

with four potential outcomes: AB (correct), BA (backward), AA (repeat first

response), and BB (repeat second response). Correct AB sequences led to

delivery of one pellet, and both correct and incorrect trials were followed by

an 8-s inter-trial interval. Behavioral performance on the accelerating rotarod



(Rothwell et al., 2014), spatial discrimination/reversal (Gourley et al., 2010), and

progressive ratio (Schwartz et al., 2014) was tested using published protocols;

see Supplemental Experimental Procedures for details. Optogenetic stimula-

tion in vivo was delivered with a 473 nm, 100mW laser fitted to a 13 2 intensity

splitter/rotary joint. Light intensity at cannula tips was verified at 3–5 mW prior

to and following every session. Bilateral light pulses (5 ms) were delivered at

frequencies ranging from 1 to 20 Hz, triggered during specific segments of

the behavioral task.

Virus Production and Stereotaxic Surgery

Adeno-associated virus and rabies virus were produced using standard proce-

dures (Dölen et al., 2013; Rothwell et al., 2014); see Supplemental Experi-

mental Procedures for details. Stereotaxic surgery was performed under gen-

eral ketamine-medetomidine anesthesia. A small volume of virus (0.5–0.75 ml)

in a glass needle was infused at 0.1 ml/min through a craniotomy, and the injec-

tion needle was left in place for at least 5 min after the end of infusion before

being withdrawn. For optogenetic stimulation, dual ferrule fiberoptic cannulas

were lowered into position above theDLS and fixed in placewith dental acrylic.

Behavioral testing did not commence until at least 3 days after surgery.

Electrophysiology

Whole-cell voltage-clamp and current-clamp recordings from coronal brain

slices (250 mm) containing the DLS or M2 were performed using standard pro-

cedures (Rothwell et al., 2014); see Supplemental Experimental Procedures for

details. Pharmacologically isolated EPSCs were evoked at 0.1 Hz with a bipo-

lar electrode or 1ms pulses of blue light (�5mW). AMPAR/NMDAR ratios were

determined by comparing peak amplitude of the AMPAR EPSC at �80 mV,

and the average NMDAR EPSC recorded 50–60 ms after stimulation

at +40 mV.

Data Analysis

Experimental data were always compared to control data collected from litter-

mate animals during the same time period. Data were analyzed using factorial

ANOVA; between-subject factors included genotype, virus injection site, and

training condition, while repeated-measures included session, stimulation fre-

quency, and step with laser on. Significant main effects were followed by SNK

post hoc tests, with symbols denoting statistical significance placed to the

side of the last data point in the series or in parallel above corresponding

data points in separate series. Significant interactions were decomposed us-

ing one-way ANOVA to test for simple effects, with symbols denoting statisti-

cal significance placed above individual data points. Type I error rate was set

at a = 0.05 (two-tailed) for all statistical comparisons, and all data are pre-

sented as mean ± SEM. Sample sizes are indicated in figure legends; pairwise

comparisons that are not significant are not identified.
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